Computer Science > Computer Vision and Pattern Recognition
[Submitted on 21 Nov 2023]
Title:MaskFlow: Object-Aware Motion Estimation
View PDFAbstract:We introduce a novel motion estimation method, MaskFlow, that is capable of estimating accurate motion fields, even in very challenging cases with small objects, large displacements and drastic appearance changes. In addition to lower-level features, that are used in other Deep Neural Network (DNN)-based motion estimation methods, MaskFlow draws from object-level features and segmentations. These features and segmentations are used to approximate the objects' translation motion field. We propose a novel and effective way of incorporating the incomplete translation motion field into a subsequent motion estimation network for refinement and completion. We also produced a new challenging synthetic dataset with motion field ground truth, and also provide extra ground truth for the object-instance matchings and corresponding segmentation masks. We demonstrate that MaskFlow outperforms state of the art methods when evaluated on our new challenging dataset, whilst still producing comparable results on the popular FlyingThings3D benchmark dataset.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.