Computer Science > Information Retrieval
[Submitted on 8 Nov 2023 (v1), last revised 22 May 2024 (this version, v3)]
Title:Evaluating Generative Ad Hoc Information Retrieval
View PDF HTML (experimental)Abstract:Recent advances in large language models have enabled the development of viable generative retrieval systems. Instead of a traditional document ranking, generative retrieval systems often directly return a grounded generated text as a response to a query. Quantifying the utility of the textual responses is essential for appropriately evaluating such generative ad hoc retrieval. Yet, the established evaluation methodology for ranking-based ad hoc retrieval is not suited for the reliable and reproducible evaluation of generated responses. To lay a foundation for developing new evaluation methods for generative retrieval systems, we survey the relevant literature from the fields of information retrieval and natural language processing, identify search tasks and system architectures in generative retrieval, develop a new user model, and study its operationalization.
Submission history
From: Lukas Gienapp [view email][v1] Wed, 8 Nov 2023 14:05:00 UTC (654 KB)
[v2] Thu, 2 May 2024 08:50:42 UTC (491 KB)
[v3] Wed, 22 May 2024 10:33:56 UTC (882 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.