Quantum Physics
[Submitted on 6 Nov 2023]
Title:Indirect Quantum Approximate Optimization Algorithms: application to the TSP
View PDFAbstract:We propose an Indirect Quantum Approximate Optimization Algorithm (referred to as IQAOA) where the Quantum Alternating Operator Ansatz takes into consideration a general parameterized family of unitary operators to efficiently model the Hamiltonian describing the set of string vectors. This algorithm creates an efficient alternative to QAOA, where: 1) a Quantum parametrized circuit executed on a quantum machine models the set of string vectors; 2) a Classical meta-optimization loop executed on a classical machine; 3) an estimation of the average cost of each string vector computing, using a well know algorithm coming from the OR community that is problem dependent. The indirect encoding defined by dimensional string vector is mapped into a solution by an efficient coding/decoding mechanism. The main advantage is to obtain a quantum circuit with a strongly limited number of gates that could be executed on the noisy current quantum machines. The numerical experiments achieved with IQAOA permits to solve 8-customer instances TSP using the IBM simulator which are to the best of our knowledge the largest TSP ever solved using a QAOA based approach.
Submission history
From: Philippe Lacomme Dr [view email][v1] Mon, 6 Nov 2023 17:39:14 UTC (1,249 KB)
Current browse context:
quant-ph
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.