Physics > Optics
[Submitted on 31 Oct 2023]
Title:Physical-layer key distribution using synchronous complex dynamics of DBR semiconductor lasers
View PDFAbstract:Common-signal-induced synchronization of semiconductor lasers with optical feedback inspired a promising physical key distribution with information-theoretic security and potential in high rate. A significant challenge is the requirement to shorten the synchronization recovery time for increasing key rate without sacrificing operation parameter space for security. Here, open-loop synchronization of wavelength-tunable multi-section distributed Bragg reflector (DBR) lasers is proposed as a solution for physical-layer key distribution. Experiments show that the synchronization is sensitive to two operation parameters, i.e., currents of grating section and phase section. Furthermore, fast wavelength-shift keying synchronization can be achieved by direct modulation on one of the two currents. The synchronization recovery time is shortened by one order of magnitude compared to close-loop synchronization. An experimental implementation is demonstrated with a final key rate of 5.98 Mbit/s over 160 km optical fiber distance. It is thus believed that fast-tunable multi-section semiconductor lasers opens a new avenue of high-rate physical-layer key distribution using laser synchronization.
Current browse context:
physics.optics
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.