Computer Science > Artificial Intelligence
[Submitted on 15 Oct 2023]
Title:Worst-Case Analysis is Maximum-A-Posteriori Estimation
View PDFAbstract:The worst-case resource usage of a program can provide useful information for many software-engineering tasks, such as performance optimization and algorithmic-complexity-vulnerability discovery. This paper presents a generic, adaptive, and sound fuzzing framework, called DSE-SMC, for estimating worst-case resource usage. DSE-SMC is generic because it is black-box as long as the user provides an interface for retrieving resource-usage information on a given input; adaptive because it automatically balances between exploration and exploitation of candidate inputs; and sound because it is guaranteed to converge to the true resource-usage distribution of the analyzed program.
DSE-SMC is built upon a key observation: resource accumulation in a program is isomorphic to the soft-conditioning mechanism in Bayesian probabilistic programming; thus, worst-case resource analysis is isomorphic to the maximum-a-posteriori-estimation problem of Bayesian statistics. DSE-SMC incorporates sequential Monte Carlo (SMC) -- a generic framework for Bayesian inference -- with adaptive evolutionary fuzzing algorithms, in a sound manner, i.e., DSE-SMC asymptotically converges to the posterior distribution induced by resource-usage behavior of the analyzed program. Experimental evaluation on Java applications demonstrates that DSE-SMC is significantly more effective than existing black-box fuzzing methods for worst-case analysis.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.