Computer Science > Artificial Intelligence
[Submitted on 12 Oct 2023]
Title:Real-Time Event Detection with Random Forests and Temporal Convolutional Networks for More Sustainable Petroleum Industry
View PDFAbstract:The petroleum industry is crucial for modern society, but the production process is complex and risky. During the production, accidents or failures, resulting from undesired production events, can cause severe environmental and economic damage. Previous studies have investigated machine learning (ML) methods for undesired event detection. However, the prediction of event probability in real-time was insufficiently addressed, which is essential since it is important to undertake early intervention when an event is expected to happen. This paper proposes two ML approaches, random forests and temporal convolutional networks, to detect undesired events in real-time. Results show that our approaches can effectively classify event types and predict the probability of their appearance, addressing the challenges uncovered in previous studies and providing a more effective solution for failure event management during the production.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.