Computer Science > Computation and Language
[Submitted on 30 Sep 2023 (v1), last revised 21 Feb 2024 (this version, v4)]
Title:Decoding In-Context Learning: Neuroscience-inspired Analysis of Representations in Large Language Models
View PDF HTML (experimental)Abstract:Large language models (LLMs) exhibit remarkable performance improvement through in-context learning (ICL) by leveraging task-specific examples in the input. However, the mechanisms behind this improvement remain elusive. In this work, we investigate how LLM embeddings and attention representations change following in-context-learning, and how these changes mediate improvement in behavior. We employ neuroscience-inspired techniques such as representational similarity analysis (RSA) and propose novel methods for parameterized probing and measuring ratio of attention to relevant vs. irrelevant information in Llama-2 70B and Vicuna 13B. We designed two tasks with a priori relationships among their conditions: linear regression and reading comprehension. We formed hypotheses about expected similarities in task representations and measured hypothesis alignment of LLM representations before and after ICL as well as changes in attention. Our analyses revealed a meaningful correlation between improvements in behavior after ICL and changes in both embeddings and attention weights across LLM layers. This empirical framework empowers a nuanced understanding of how latent representations shape LLM behavior, offering valuable tools and insights for future research and practical applications.
Submission history
From: Safoora Yousefi [view email][v1] Sat, 30 Sep 2023 09:01:35 UTC (3,358 KB)
[v2] Wed, 18 Oct 2023 08:53:46 UTC (7,456 KB)
[v3] Thu, 8 Feb 2024 00:39:07 UTC (10,617 KB)
[v4] Wed, 21 Feb 2024 19:51:20 UTC (10,617 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.