Computer Science > Data Structures and Algorithms
[Submitted on 29 Aug 2023]
Title:Approximate Monotone Local Search for Weighted Problems
View PDFAbstract:In a recent work, Esmer et al. describe a simple method - Approximate Monotone Local Search - to obtain exponential approximation algorithms from existing parameterized exact algorithms, polynomial-time approximation algorithms and, more generally, parameterized approximation algorithms. In this work, we generalize those results to the weighted setting.
More formally, we consider monotone subset minimization problems over a weighted universe of size $n$ (e.g., Vertex Cover, $d$-Hitting Set and Feedback Vertex Set). We consider a model where the algorithm is only given access to a subroutine that finds a solution of weight at most $\alpha \cdot W$ (and of arbitrary cardinality) in time $c^k \cdot n^{O(1)}$ where $W$ is the minimum weight of a solution of cardinality at most $k$. In the unweighted setting, Esmer et al. determine the smallest value $d$ for which a $\beta$-approximation algorithm running in time $d^n \cdot n^{O(1)}$ can be obtained in this model. We show that the same dependencies also hold in a weighted setting in this model: for every fixed $\varepsilon>0$ we obtain a $\beta$-approximation algorithm running in time $O\left((d+\varepsilon)^{n}\right)$, for the same $d$ as in the unweighted setting.
Similarly, we also extend a $\beta$-approximate brute-force search (in a model which only provides access to a membership oracle) to the weighted setting. Using existing approximation algorithms and exact parameterized algorithms for weighted problems, we obtain the first exponential-time $\beta$-approximation algorithms that are better than brute force for a variety of problems including Weighted Vertex Cover, Weighted $d$-Hitting Set, Weighted Feedback Vertex Set and Weighted Multicut.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.