Statistics > Machine Learning
[Submitted on 3 Jul 2023]
Title:Supervised Manifold Learning via Random Forest Geometry-Preserving Proximities
View PDFAbstract:Manifold learning approaches seek the intrinsic, low-dimensional data structure within a high-dimensional space. Mainstream manifold learning algorithms, such as Isomap, UMAP, $t$-SNE, Diffusion Map, and Laplacian Eigenmaps do not use data labels and are thus considered unsupervised. Existing supervised extensions of these methods are limited to classification problems and fall short of uncovering meaningful embeddings due to their construction using order non-preserving, class-conditional distances. In this paper, we show the weaknesses of class-conditional manifold learning quantitatively and visually and propose an alternate choice of kernel for supervised dimensionality reduction using a data-geometry-preserving variant of random forest proximities as an initialization for manifold learning methods. We show that local structure preservation using these proximities is near universal across manifold learning approaches and global structure is properly maintained using diffusion-based algorithms.
Current browse context:
stat.ML
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.