Computer Science > Computer Vision and Pattern Recognition
[Submitted on 15 Jun 2023]
Title:Edit-DiffNeRF: Editing 3D Neural Radiance Fields using 2D Diffusion Model
View PDFAbstract:Recent research has demonstrated that the combination of pretrained diffusion models with neural radiance fields (NeRFs) has emerged as a promising approach for text-to-3D generation. Simply coupling NeRF with diffusion models will result in cross-view inconsistency and degradation of stylized view syntheses. To address this challenge, we propose the Edit-DiffNeRF framework, which is composed of a frozen diffusion model, a proposed delta module to edit the latent semantic space of the diffusion model, and a NeRF. Instead of training the entire diffusion for each scene, our method focuses on editing the latent semantic space in frozen pretrained diffusion models by the delta module. This fundamental change to the standard diffusion framework enables us to make fine-grained modifications to the rendered views and effectively consolidate these instructions in a 3D scene via NeRF training. As a result, we are able to produce an edited 3D scene that faithfully aligns to input text instructions. Furthermore, to ensure semantic consistency across different viewpoints, we propose a novel multi-view semantic consistency loss that extracts a latent semantic embedding from the input view as a prior, and aim to reconstruct it in different views. Our proposed method has been shown to effectively edit real-world 3D scenes, resulting in 25% improvement in the alignment of the performed 3D edits with text instructions compared to prior work.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.