Computer Science > Cryptography and Security
[Submitted on 6 Jun 2023]
Title:OptimShare: A Unified Framework for Privacy Preserving Data Sharing -- Towards the Practical Utility of Data with Privacy
View PDFAbstract:Tabular data sharing serves as a common method for data exchange. However, sharing sensitive information without adequate privacy protection can compromise individual privacy. Thus, ensuring privacy-preserving data sharing is crucial. Differential privacy (DP) is regarded as the gold standard in data privacy. Despite this, current DP methods tend to generate privacy-preserving tabular datasets that often suffer from limited practical utility due to heavy perturbation and disregard for the tables' utility dynamics. Besides, there has not been much research on selective attribute release, particularly in the context of controlled partially perturbed data sharing. This has significant implications for scenarios such as cross-agency data sharing in real-world situations. We introduce OptimShare: a utility-focused, multi-criteria solution designed to perturb input datasets selectively optimized for specific real-world applications. OptimShare combines the principles of differential privacy, fuzzy logic, and probability theory to establish an integrated tool for privacy-preserving data sharing. Empirical assessments confirm that OptimShare successfully strikes a balance between better data utility and robust privacy, effectively serving various real-world problem scenarios.
Submission history
From: Mahawaga Arachchige Pathum Chamikara [view email][v1] Tue, 6 Jun 2023 03:40:11 UTC (4,123 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.