Computer Science > Computation and Language
[Submitted on 1 Jun 2023]
Title:Bypass Temporal Classification: Weakly Supervised Automatic Speech Recognition with Imperfect Transcripts
View PDFAbstract:This paper presents a novel algorithm for building an automatic speech recognition (ASR) model with imperfect training data. Imperfectly transcribed speech is a prevalent issue in human-annotated speech corpora, which degrades the performance of ASR models. To address this problem, we propose Bypass Temporal Classification (BTC) as an expansion of the Connectionist Temporal Classification (CTC) criterion. BTC explicitly encodes the uncertainties associated with transcripts during training. This is accomplished by enhancing the flexibility of the training graph, which is implemented as a weighted finite-state transducer (WFST) composition. The proposed algorithm improves the robustness and accuracy of ASR systems, particularly when working with imprecisely transcribed speech corpora. Our implementation will be open-sourced.
Current browse context:
cs.CL
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.