Computer Science > Computer Vision and Pattern Recognition
[Submitted on 31 May 2023 (v1), last revised 17 Jun 2024 (this version, v2)]
Title:A Survey of Label-Efficient Deep Learning for 3D Point Clouds
View PDF HTML (experimental)Abstract:In the past decade, deep neural networks have achieved significant progress in point cloud learning. However, collecting large-scale precisely-annotated training data is extremely laborious and expensive, which hinders the scalability of existing point cloud datasets and poses a bottleneck for efficient exploration of point cloud data in various tasks and applications. Label-efficient learning offers a promising solution by enabling effective deep network training with much-reduced annotation efforts. This paper presents the first comprehensive survey of label-efficient learning of point clouds. We address three critical questions in this emerging research field: i) the importance and urgency of label-efficient learning in point cloud processing, ii) the subfields it encompasses, and iii) the progress achieved in this area. To achieve this, we propose a taxonomy that organizes label-efficient learning methods based on the data prerequisites provided by different types of labels. We categorize four typical label-efficient learning approaches that significantly reduce point cloud annotation efforts: data augmentation, domain transfer learning, weakly-supervised learning, and pretrained foundation models. For each approach, we outline the problem setup and provide an extensive literature review that showcases relevant progress and challenges. Finally, we share insights into current research challenges and potential future directions. A project associated with this survey has been built at this https URL.
Submission history
From: Aoran Xiao [view email][v1] Wed, 31 May 2023 12:54:51 UTC (28,181 KB)
[v2] Mon, 17 Jun 2024 07:11:14 UTC (22,128 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.