Computer Science > Human-Computer Interaction
[Submitted on 30 May 2023 (v1), last revised 10 Jun 2023 (this version, v3)]
Title:Inferring Private Personal Attributes of Virtual Reality Users from Head and Hand Motion Data
View PDFAbstract:Motion tracking "telemetry" data lies at the core of nearly all modern virtual reality (VR) and metaverse experiences. While generally presumed innocuous, recent studies have demonstrated that motion data actually has the potential to uniquely identify VR users. In this study, we go a step further, showing that a variety of private user information can be inferred just by analyzing motion data recorded from VR devices. We conducted a large-scale survey of VR users (N=1,006) with dozens of questions ranging from background and demographics to behavioral patterns and health information. We then obtained VR motion samples of each user playing the game "Beat Saber," and attempted to infer their survey responses using just their head and hand motion patterns. Using simple machine learning models, over 40 personal attributes could be accurately and consistently inferred from VR motion data alone. Despite this significant observed leakage, there remains limited awareness of the privacy implications of VR motion data, highlighting the pressing need for privacy-preserving mechanisms in multi-user VR applications.
Submission history
From: Vivek Nair [view email][v1] Tue, 30 May 2023 16:44:40 UTC (335 KB)
[v2] Fri, 2 Jun 2023 16:43:44 UTC (335 KB)
[v3] Sat, 10 Jun 2023 16:08:33 UTC (433 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.