Mathematics > Numerical Analysis
[Submitted on 24 May 2023]
Title:Harmonic Measures and Numerical Computation of Cauchy Problems for Laplace Equations
View PDFAbstract:It is well known that Cauchy problem for Laplace equations is an ill-posed problem in Hadamard's sense. Small deviations in Cauchy data may lead to large errors in the solutions. It is observed that if a bound is imposed on the solution, there exists a conditional stability estimate. This gives a reasonable way to construct stable algorithms. However, it is impossible to have good results at all points in the domain. Although numerical methods for Cauchy problems for Laplace equations have been widely studied for quite a long time, there are still some unclear points, for example, how to evaluate the numerical solutions, which means whether we can approximate the Cauchy data well and keep the bound of the solution, and at which points the numerical results are reliable? In this paper, we will prove the conditional stability estimate which is quantitatively related to harmonic measures. The harmonic measure can be used as an indicate function to pointwisely evaluate the numerical result, which further enables us to find a reliable subdomain where the local convergence rate is higher than a certain order.
Current browse context:
math.NA
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.