Computer Science > Data Structures and Algorithms
[Submitted on 26 Apr 2023]
Title:Acceleration for Timing-Aware Gate-Level Logic Simulation with One-Pass GPU Parallelism
View PDFAbstract:Witnessing the advancing scale and complexity of chip design and benefiting from high-performance computation technologies, the simulation of Very Large Scale Integration (VLSI) Circuits imposes an increasing requirement for acceleration through parallel computing with GPU devices. However, the conventional parallel strategies do not fully align with modern GPU abilities, leading to new challenges in the parallelism of VLSI simulation when using GPU, despite some previous successful demonstrations of significant acceleration. In this paper, we propose a novel approach to accelerate 4-value logic timing-aware gate-level logic simulation using waveform-based GPU parallelism. Our approach utilizes a new strategy that can effectively handle the dependency between tasks during the parallelism, reducing the synchronization requirement between CPU and GPU when parallelizing the simulation on combinational circuits. This approach requires only one round of data transfer and hence achieves one-pass parallelism. Moreover, to overcome the difficulty within the adoption of our strategy in GPU devices, we design a series of data structures and tune them to dynamically allocate and store new-generated output with uncertain scale. Finally, experiments are carried out on industrial-scale open-source benchmarks to demonstrate the performance gain of our approach compared to several state-of-the-art baselines.
Current browse context:
cs.DS
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.