Electrical Engineering and Systems Science > Systems and Control
[Submitted on 19 Apr 2023 (v1), last revised 16 Jun 2023 (this version, v2)]
Title:Regularization for distributionally robust state estimation and prediction
View PDFAbstract:The increasing availability of sensing techniques provides a great opportunity for engineers to design state estimation methods, which are optimal for the system under observation and the observed noise patterns. However, these patterns often do not fulfill the assumptions of existing methods. We provide a direct method using samples of the noise to create a moving horizon observer for linear time-varying and nonlinear systems, which is optimal under the empirical noise distribution. Moreover, we show how to enhance the observer with distributional robustness properties in order to handle unmodeled components in the noise profile, as well as different noise realizations. We prove that, even though the design of distributionally robust estimators is a complex minmax problem over an infinite-dimensional space, it can be transformed into a regularized linear program using a system level synthesis approach. Numerical experiments with the Van der Pol oscillator show the benefits of not only using empirical samples of the noise to design the state estimator, but also of adding distributional robustness. We show that our method can significantly outperform state-of-the-art approaches under challenging noise distributions, including multi-modal and deterministic components.
Submission history
From: Jean-Sébastien Brouillon [view email][v1] Wed, 19 Apr 2023 18:57:22 UTC (275 KB)
[v2] Fri, 16 Jun 2023 14:33:02 UTC (228 KB)
Current browse context:
eess.SY
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.