Computer Science > Robotics
[Submitted on 28 Mar 2023]
Title:ARMP: Autoregressive Motion Planning for Quadruped Locomotion and Navigation in Complex Indoor Environments
View PDFAbstract:Generating natural and physically feasible motions for legged robots has been a challenging problem due to its complex dynamics. In this work, we introduce a novel learning-based framework of autoregressive motion planner (ARMP) for quadruped locomotion and navigation. Our method can generate motion plans with an arbitrary length in an autoregressive fashion, unlike most offline trajectory optimization algorithms for a fixed trajectory length. To this end, we first construct the motion library by solving a dense set of trajectory optimization problems for diverse scenarios and parameter settings. Then we learn the motion manifold from the dataset in a supervised learning fashion. We show that the proposed ARMP can generate physically plausible motions for various tasks and situations. We also showcase that our method can be successfully integrated with the recent robot navigation frameworks as a low-level controller and unleash the full capability of legged robots for complex indoor navigation.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.