Computer Science > Computer Vision and Pattern Recognition
[Submitted on 21 Mar 2023]
Title:E-MLB: Multilevel Benchmark for Event-Based Camera Denoising
View PDFAbstract:Event cameras, such as dynamic vision sensors (DVS), are biologically inspired vision sensors that have advanced over conventional cameras in high dynamic range, low latency and low power consumption, showing great application potential in many fields. Event cameras are more sensitive to junction leakage current and photocurrent as they output differential signals, losing the smoothing function of the integral imaging process in the RGB camera. The logarithmic conversion further amplifies noise, especially in low-contrast conditions. Recently, researchers proposed a series of datasets and evaluation metrics but limitations remain: 1) the existing datasets are small in scale and insufficient in noise diversity, which cannot reflect the authentic working environments of event cameras; and 2) the existing denoising evaluation metrics are mostly referenced evaluation metrics, relying on APS information or manual annotation. To address the above issues, we construct a large-scale event denoising dataset (multilevel benchmark for event denoising, E-MLB) for the first time, which consists of 100 scenes, each with four noise levels, that is 12 times larger than the largest existing denoising dataset. We also propose the first nonreference event denoising metric, the event structural ratio (ESR), which measures the structural intensity of given events. ESR is inspired by the contrast metric, but is independent of the number of events and projection direction. Based on the proposed benchmark and ESR, we evaluate the most representative denoising algorithms, including classic and SOTA, and provide denoising baselines under various scenes and noise levels. The corresponding results and codes are available at this https URL.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.