Computer Science > Computation and Language
[Submitted on 20 Mar 2023 (v1), last revised 21 Mar 2023 (this version, v2)]
Title:DocRED-FE: A Document-Level Fine-Grained Entity And Relation Extraction Dataset
View PDFAbstract:Joint entity and relation extraction (JERE) is one of the most important tasks in information extraction. However, most existing works focus on sentence-level coarse-grained JERE, which have limitations in real-world scenarios. In this paper, we construct a large-scale document-level fine-grained JERE dataset DocRED-FE, which improves DocRED with Fine-Grained Entity Type. Specifically, we redesign a hierarchical entity type schema including 11 coarse-grained types and 119 fine-grained types, and then re-annotate DocRED manually according to this schema. Through comprehensive experiments we find that: (1) DocRED-FE is challenging to existing JERE models; (2) Our fine-grained entity types promote relation classification. We make DocRED-FE with instruction and the code for our baselines publicly available at this https URL.
Submission history
From: Hongbo Wang [view email][v1] Mon, 20 Mar 2023 14:19:58 UTC (705 KB)
[v2] Tue, 21 Mar 2023 09:03:14 UTC (705 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.