Computer Science > Information Theory
[Submitted on 11 Mar 2023 (v1), last revised 23 Apr 2024 (this version, v2)]
Title:Semantic-Aware Multi-Terminal Coding for Gaussian Mixture Sources
View PDF HTML (experimental)Abstract:A novel distributed source coding model which named semantic-aware multi-terminal (MT) source coding is proposed and investigated in the paper, where multiple agents independently encode an imperceptible semantic source, while both semantic and observations are reconstructed within their respective fidelity criteria. We start from a generalized single-letter characterization of sum rate-distortion region of this problem. Furthermore, we propose a mixed MSE-Log loss framework for this model and specifically depict the rate-distortion bounds when sources are Gaussian mixture distributed. For this case, we first present a relative tight outer bound and explore the activeness of semantic and observation distortion constraints, in which we find that good observation reconstruction will not incur too much semantic errors, but not vice versa. Moreover, we provide a practical coding scheme functioning as an achievable regime of inner bound with the performance analysis and simulation results, which verifies the feasibility of the idea "detect and compress" for Gaussian mixture sources. Our results provide theoretical instructions on the fundamental limits and can be used to guide the practical semantic-aware coding designs for multi-user scenarios.
Submission history
From: Yu-Xuan Shi [view email][v1] Sat, 11 Mar 2023 11:50:06 UTC (1,025 KB)
[v2] Tue, 23 Apr 2024 08:22:18 UTC (4,524 KB)
Current browse context:
cs.IT
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.