Computer Science > Information Retrieval
[Submitted on 26 Feb 2023]
Title:Cross-lingual Knowledge Transfer via Distillation for Multilingual Information Retrieval
View PDFAbstract:In this paper, we introduce the approach behind our submission for the MIRACL challenge, a WSDM 2023 Cup competition that centers on ad-hoc retrieval across 18 diverse languages. Our solution contains two neural-based models. The first model is a bi-encoder re-ranker, on which we apply a cross-lingual distillation technique to transfer ranking knowledge from English to the target language space. The second model is a cross-encoder re-ranker trained on multilingual retrieval data generated using neural machine translation. We further fine-tune both models using MIRACL training data and ensemble multiple rank lists to obtain the final result. According to the MIRACL leaderboard, our approach ranks 8th for the Test-A set and 2nd for the Test-B set among the 16 known languages.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.