Computer Science > Computer Vision and Pattern Recognition
[Submitted on 14 Feb 2023 (v1), last revised 23 Aug 2023 (this version, v2)]
Title:SEAM: Searching Transferable Mixed-Precision Quantization Policy through Large Margin Regularization
View PDFAbstract:Mixed-precision quantization (MPQ) suffers from the time-consuming process of searching the optimal bit-width allocation i.e., the policy) for each layer, especially when using large-scale datasets such as ISLVRC-2012. This limits the practicality of MPQ in real-world deployment scenarios. To address this issue, this paper proposes a novel method for efficiently searching for effective MPQ policies using a small proxy dataset instead of the large-scale dataset used for training the model. Deviating from the established norm of employing a consistent dataset for both model training and MPQ policy search stages, our approach, therefore, yields a substantial enhancement in the efficiency of MPQ exploration. Nonetheless, using discrepant datasets poses challenges in searching for a transferable MPQ policy. Driven by the observation that quantization noise of sub-optimal policy exerts a detrimental influence on the discriminability of feature representations -- manifesting as diminished class margins and ambiguous decision boundaries -- our method aims to identify policies that uphold the discriminative nature of feature representations, i.e., intra-class compactness and inter-class separation. This general and dataset-independent property makes us search for the MPQ policy over a rather small-scale proxy dataset and then the policy can be directly used to quantize the model trained on a large-scale dataset. Our method offers several advantages, including high proxy data utilization, no excessive hyper-parameter tuning, and high searching efficiency. We search high-quality MPQ policies with the proxy dataset that has only 4% of the data scale compared to the large-scale target dataset, achieving the same accuracy as searching directly on the latter, improving MPQ searching efficiency by up to 300 times.
Submission history
From: Chen Tang [view email][v1] Tue, 14 Feb 2023 05:47:45 UTC (963 KB)
[v2] Wed, 23 Aug 2023 03:56:24 UTC (2,567 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.