Computer Science > Human-Computer Interaction
[Submitted on 6 Feb 2023]
Title:PGCN: Pyramidal Graph Convolutional Network for EEG Emotion Recognition
View PDFAbstract:Emotion recognition is essential in the diagnosis and rehabilitation of various mental diseases. In the last decade, electroencephalogram (EEG)-based emotion recognition has been intensively investigated due to its prominative accuracy and reliability, and graph convolutional network (GCN) has become a mainstream model to decode emotions from EEG signals. However, the electrode relationship, especially long-range electrode dependencies across the scalp, may be underutilized by GCNs, although such relationships have been proven to be important in emotion recognition. The small receptive field makes shallow GCNs only aggregate local nodes. On the other hand, stacking too many layers leads to over-smoothing. To solve these problems, we propose the pyramidal graph convolutional network (PGCN), which aggregates features at three levels: local, mesoscopic, and global. First, we construct a vanilla GCN based on the 3D topological relationships of electrodes, which is used to integrate two-order local features; Second, we construct several mesoscopic brain regions based on priori knowledge and employ mesoscopic attention to sequentially calculate the virtual mesoscopic centers to focus on the functional connections of mesoscopic brain regions; Finally, we fuse the node features and their 3D positions to construct a numerical relationship adjacency matrix to integrate structural and functional connections from the global perspective. Experimental results on three public datasets indicate that PGCN enhances the relationship modelling across the scalp and achieves state-of-the-art performance in both subject-dependent and subject-independent scenarios. Meanwhile, PGCN makes an effective trade-off between enhancing network depth and receptive fields while suppressing the ensuing over-smoothing. Our codes are publicly accessible at this https URL.
Current browse context:
cs.HC
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.