Computer Science > Computation and Language
[Submitted on 26 Jan 2023]
Title:Neural Dynamic Focused Topic Model
View PDFAbstract:Topic models and all their variants analyse text by learning meaningful representations through word co-occurrences. As pointed out by Williamson et al. (2010), such models implicitly assume that the probability of a topic to be active and its proportion within each document are positively correlated. This correlation can be strongly detrimental in the case of documents created over time, simply because recent documents are likely better described by new and hence rare topics. In this work we leverage recent advances in neural variational inference and present an alternative neural approach to the dynamic Focused Topic Model. Indeed, we develop a neural model for topic evolution which exploits sequences of Bernoulli random variables in order to track the appearances of topics, thereby decoupling their activities from their proportions. We evaluate our model on three different datasets (the UN general debates, the collection of NeurIPS papers, and the ACL Anthology dataset) and show that it (i) outperforms state-of-the-art topic models in generalization tasks and (ii) performs comparably to them on prediction tasks, while employing roughly the same number of parameters, and converging about two times faster. Source code to reproduce our experiments is available online.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.