Computer Science > Machine Learning
[Submitted on 25 Jan 2023 (v1), last revised 25 Oct 2023 (this version, v3)]
Title:Increasing Fairness via Combination with Learning Guarantees
View PDFAbstract:The concern about underlying discrimination hidden in machine learning (ML) models is increasing, as ML systems have been widely applied in more and more real-world scenarios and any discrimination hidden in them will directly affect human life. Many techniques have been developed to enhance fairness including commonly-used group fairness measures and several fairness-aware methods combining ensemble learning. However, existing fairness measures can only focus on one aspect -- either group or individual fairness, and the hard compatibility among them indicates a possibility of remaining biases even if one of them is satisfied. Moreover, existing mechanisms to boost fairness usually present empirical results to show validity, yet few of them discuss whether fairness can be boosted with certain theoretical guarantees. To address these issues, we propose a fairness quality measure named discriminative risk to reflect both individual and group fairness aspects. Furthermore, we investigate the properties of the proposed measure and propose first- and second-order oracle bounds to show that fairness can be boosted via ensemble combination with theoretical learning guarantees. The analysis is suitable for both binary and multi-class classification. A pruning method is also proposed to utilise our proposed measure and comprehensive experiments are conducted to evaluate the effectiveness of the proposed methods.
Submission history
From: Yijun Bian [view email][v1] Wed, 25 Jan 2023 20:31:06 UTC (1,190 KB)
[v2] Mon, 3 Jul 2023 16:12:19 UTC (1,438 KB)
[v3] Wed, 25 Oct 2023 19:44:27 UTC (3,569 KB)
Current browse context:
cs.LG
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.