Electrical Engineering and Systems Science > Image and Video Processing
[Submitted on 5 Jan 2023]
Title:TractGraphCNN: anatomically informed graph CNN for classification using diffusion MRI tractography
View PDFAbstract:The structure and variability of the brain's connections can be investigated via prediction of non-imaging phenotypes using neural networks. However, known neuroanatomical relationships between input features are generally ignored in network design. We propose TractGraphCNN, a novel, anatomically informed graph CNN framework for machine learning tasks using diffusion MRI tractography. An EdgeConv module aggregates features from anatomically similar white matter connections indicated by graph edges, and an attention module enables interpretation of predictive white matter tracts. Results in a sex prediction testbed task demonstrate strong performance of TractGraphCNN in two large datasets (HCP and ABCD). Graphs informed by white matter geometry demonstrate higher performance than graphs informed by gray matter connectivity. Overall, the bilateral cingulum and left middle longitudinal fasciculus are consistently highly predictive of sex. This work shows the potential of incorporating anatomical information, especially known anatomical similarities between input features, to guide convolutions in neural networks.
Current browse context:
eess.IV
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.