Computer Science > Machine Learning
[Submitted on 27 Nov 2022]
Title:Latent SHAP: Toward Practical Human-Interpretable Explanations
View PDFAbstract:Model agnostic feature attribution algorithms (such as SHAP and LIME) are ubiquitous techniques for explaining the decisions of complex classification models, such as deep neural networks. However, since complex classification models produce superior performance when trained on low-level (or encoded) features, in many cases, the explanations generated by these algorithms are neither interpretable nor usable by humans. Methods proposed in recent studies that support the generation of human-interpretable explanations are impractical, because they require a fully invertible transformation function that maps the model's input features to the human-interpretable features. In this work, we introduce Latent SHAP, a black-box feature attribution framework that provides human-interpretable explanations, without the requirement for a fully invertible transformation function. We demonstrate Latent SHAP's effectiveness using (1) a controlled experiment where invertible transformation functions are available, which enables robust quantitative evaluation of our method, and (2) celebrity attractiveness classification (using the CelebA dataset) where invertible transformation functions are not available, which enables thorough qualitative evaluation of our method.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.