Computer Science > Computer Vision and Pattern Recognition
[Submitted on 23 Nov 2022]
Title:Look, Read and Ask: Learning to Ask Questions by Reading Text in Images
View PDFAbstract:We present a novel problem of text-based visual question generation or TextVQG in short. Given the recent growing interest of the document image analysis community in combining text understanding with conversational artificial intelligence, e.g., text-based visual question answering, TextVQG becomes an important task. TextVQG aims to generate a natural language question for a given input image and an automatically extracted text also known as OCR token from it such that the OCR token is an answer to the generated question. TextVQG is an essential ability for a conversational agent. However, it is challenging as it requires an in-depth understanding of the scene and the ability to semantically bridge the visual content with the text present in the image. To address TextVQG, we present an OCR consistent visual question generation model that Looks into the visual content, Reads the scene text, and Asks a relevant and meaningful natural language question. We refer to our proposed model as OLRA. We perform an extensive evaluation of OLRA on two public benchmarks and compare them against baselines. Our model OLRA automatically generates questions similar to the public text-based visual question answering datasets that were curated manually. Moreover, we significantly outperform baseline approaches on the performance measures popularly used in text generation literature.
Submission history
From: Soumya Jahagirdar [view email][v1] Wed, 23 Nov 2022 13:52:46 UTC (22,317 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.