Computer Science > Networking and Internet Architecture
[Submitted on 16 Nov 2022 (v1), last revised 17 Nov 2022 (this version, v2)]
Title:A Comprehensive Survey on Spectrum Sharing Techniques for 5G/B5G Intelligent Wireless Networks: Opportunities, Challenges and Future Research Directions
View PDFAbstract:The increasing popularity of Internet of Everything and small-cell devices has enormously accelerated traffic loads. Consequently, increased bandwidth and high data rate requirements stimulate the operation at the millimeter wave and the Tera-Hertz spectrum bands in the fifth generation (5G) and beyond 5G (B5G) wireless networks. Furthermore, efficient spectrum allocation, maximizing the spectrum utilization, achieving efficient spectrum sharing (SS), and managing the spectrum to enhance the system performance remain challenging. To this end, recent studies have implemented artificial intelligence and machine learning techniques, enabling intelligent and efficient spectrum leveraging. However, despite many recent research advances focused on maximizing utilization of the spectrum bands, achieving efficient sharing, allocation, and management of the enormous available spectrum remains challenging. Therefore, the current article acquaints a comprehensive survey on intelligent SS methodologies for 5G and B5G wireless networks, considering the applications of artificial intelligence for efficient SS. Specifically, a thorough overview of SS methodologies is conferred, following which the various spectrum utilization opportunities arising from the existing SS methodologies in intelligent wireless networks are discussed. Subsequently, to highlight critical limitations of the existing methodologies, recent literature on existing SS methodologies is reviewed in detail, classifying them based on the implemented technology, i.e., cognitive radio, machine learning, blockchain, and multiple other techniques. Moreover, the related SS techniques are reviewed to highlight significant challenges in the B5G intelligent wireless network. Finally, to provide an insight into the prospective research avenues, the article is concluded by presenting several potential research directions and proposed solutions.
Submission history
From: Sridhar Iyer [view email][v1] Wed, 16 Nov 2022 15:03:51 UTC (1,491 KB)
[v2] Thu, 17 Nov 2022 05:38:07 UTC (1,491 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.