Electrical Engineering and Systems Science > Audio and Speech Processing
[Submitted on 12 Nov 2022 (v1), last revised 3 May 2023 (this version, v2)]
Title:Investigations in Audio Captioning: Addressing Vocabulary Imbalance and Evaluating Suitability of Language-Centric Performance Metrics
View PDFAbstract:The analysis, processing, and extraction of meaningful information from sounds all around us is the subject of the broader area of audio analytics. Audio captioning is a recent addition to the domain of audio analytics, a cross-modal translation task that focuses on generating natural descriptions from sound events occurring in an audio stream. In this work, we identify and improve on three main challenges in automated audio captioning: i) data scarcity, ii) imbalance or limitations in the audio captions vocabulary, and iii) the proper performance evaluation metric that can best capture both auditory and semantic characteristics. We find that generally adopted loss functions can result in an unfair vocabulary imbalance during model training. We propose two audio captioning augmentation methods that enrich the training dataset and the vocabulary size. We further underline the need for in-domain pretraining by exploring the suitability of audio encoders that were previously trained on different audio tasks. Finally, we systematically explore five performance metrics borrowed from the image captioning domain and highlight their limitations for the audio domain.
Submission history
From: Sandeep Reddy Kothinti [view email][v1] Sat, 12 Nov 2022 02:12:21 UTC (127 KB)
[v2] Wed, 3 May 2023 17:53:19 UTC (127 KB)
Current browse context:
eess.AS
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.