Computer Science > Robotics
[Submitted on 8 Oct 2022]
Title:A Hybrid Adaptive Velocity Aided Navigation Filter with Application to INS/DVL Fusion
View PDFAbstract:Autonomous underwater vehicles (AUV) are commonly used in many underwater applications. Usually, inertial sensors and Doppler velocity log readings are used in a nonlinear filter to estimate the AUV navigation solution. The process noise covariance matrix is tuned according to the inertial sensors' characteristics. This matrix greatly influences filter accuracy, robustness, and performance. A common practice is to assume that this matrix is fixed during the AUV operation. However, it varies over time as the amount of uncertainty is unknown. Therefore, adaptive tuning of this matrix can lead to a significant improvement in the filter performance. In this work, we propose a learning-based adaptive velocity-aided navigation filter. To that end, handcrafted features are generated and used to tune the momentary system noise covariance matrix. Once the process noise covariance is learned, it is fed into the model-based navigation filter. Simulation results show the benefits of our approach compared to other adaptive approaches.
Current browse context:
cs.RO
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.