Computer Science > Computation and Language
[Submitted on 22 Oct 2022 (v1), last revised 25 Oct 2022 (this version, v2)]
Title:Structure-Unified M-Tree Coding Solver for MathWord Problem
View PDFAbstract:As one of the challenging NLP tasks, designing math word problem (MWP) solvers has attracted increasing research attention for the past few years. In previous work, models designed by taking into account the properties of the binary tree structure of mathematical expressions at the output side have achieved better performance. However, the expressions corresponding to a MWP are often diverse (e.g., $n_1+n_2 \times n_3-n_4$, $n_3\times n_2-n_4+n_1$, etc.), and so are the corresponding binary trees, which creates difficulties in model learning due to the non-deterministic output space. In this paper, we propose the Structure-Unified M-Tree Coding Solver (SUMC-Solver), which applies a tree with any M branches (M-tree) to unify the output structures. To learn the M-tree, we use a mapping to convert the M-tree into the M-tree codes, where codes store the information of the paths from tree root to leaf nodes and the information of leaf nodes themselves, and then devise a Sequence-to-Code (seq2code) model to generate the codes. Experimental results on the widely used MAWPS and Math23K datasets have demonstrated that SUMC-Solver not only outperforms several state-of-the-art models under similar experimental settings but also performs much better under low-resource conditions.
Submission history
From: Bin Wang [view email][v1] Sat, 22 Oct 2022 12:20:36 UTC (625 KB)
[v2] Tue, 25 Oct 2022 04:57:08 UTC (625 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.