Computer Science > Data Structures and Algorithms
[Submitted on 21 Oct 2022]
Title:Rerouting Planar Curves and Disjoint Paths
View PDFAbstract:In this paper, we consider a transformation of $k$ disjoint paths in a graph. For a graph and a pair of $k$ disjoint paths $\mathcal{P}$ and $\mathcal{Q}$ connecting the same set of terminal pairs, we aim to determine whether $\mathcal{P}$ can be transformed to $\mathcal{Q}$ by repeatedly replacing one path with another path so that the intermediates are also $k$ disjoint paths. The problem is called Disjoint Paths Reconfiguration. We first show that Disjoint Paths Reconfiguration is PSPACE-complete even when $k=2$. On the other hand, we prove that, when the graph is embedded on a plane and all paths in $\mathcal{P}$ and $\mathcal{Q}$ connect the boundaries of two faces, Disjoint Paths Reconfiguration can be solved in polynomial time. The algorithm is based on a topological characterization for rerouting curves on a plane using the algebraic intersection number. We also consider a transformation of disjoint $s$-$t$ paths as a variant. We show that the disjoint $s$-$t$ paths reconfiguration problem in planar graphs can be determined in polynomial time, while the problem is PSPACE-complete in general.
Current browse context:
cs.DS
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.