Electrical Engineering and Systems Science > Signal Processing
[Submitted on 12 Oct 2022]
Title:Outlier-Insensitive Kalman Filtering Using NUV Priors
View PDFAbstract:The Kalman filter (KF) is a widely-used algorithm for tracking the latent state of a dynamical system from noisy observations. For systems that are well-described by linear Gaussian state space models, the KF minimizes the mean-squared error (MSE). However, in practice, observations are corrupted by outliers, severely impairing the KFs performance. In this work, an outlier-insensitive KF is proposed, where robustness is achieved by modeling each potential outlier as a normally distributed random variable with unknown variance (NUV). The NUVs variances are estimated online, using both expectation-maximization (EM) and alternating maximization (AM). The former was previously proposed for the task of smoothing with outliers and was adapted here to filtering, while both EM and AM obtained the same performance and outperformed the other algorithms, the AM approach is less complex and thus requires 40 percentage less run-time. Our empirical study demonstrates that the MSE of our proposed outlier-insensitive KF outperforms previously proposed algorithms, and that for data clean of outliers, it reverts to the classic KF, i.e., MSE optimality is preserved
Current browse context:
eess.SP
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.