Computer Science > Machine Learning
[Submitted on 11 Oct 2022]
Title:Component-Wise Natural Gradient Descent -- An Efficient Neural Network Optimization
View PDFAbstract:Natural Gradient Descent (NGD) is a second-order neural network training that preconditions the gradient descent with the inverse of the Fisher Information Matrix (FIM). Although NGD provides an efficient preconditioner, it is not practicable due to the expensive computation required when inverting the FIM. This paper proposes a new NGD variant algorithm named Component-Wise Natural Gradient Descent (CW-NGD). CW-NGD is composed of 2 steps. Similar to several existing works, the first step is to consider the FIM matrix as a block-diagonal matrix whose diagonal blocks correspond to the FIM of each layer's weights. In the second step, unique to CW-NGD, we analyze the layer's structure and further decompose the layer's FIM into smaller segments whose derivatives are approximately independent. As a result, individual layers' FIMs are approximated in a block-diagonal form that trivially supports the inversion. The segment decomposition strategy is varied by layer structure. Specifically, we analyze the dense and convolutional layers and design their decomposition strategies appropriately. In an experiment of training a network containing these 2 types of layers, we empirically prove that CW-NGD requires fewer iterations to converge compared to the state-of-the-art first-order and second-order methods.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.