Computer Science > Computation and Language
[Submitted on 10 Oct 2022 (v1), last revised 12 Oct 2022 (this version, v2)]
Title:Extracting or Guessing? Improving Faithfulness of Event Temporal Relation Extraction
View PDFAbstract:In this paper, we seek to improve the faithfulness of TempRel extraction models from two perspectives. The first perspective is to extract genuinely based on contextual description. To achieve this, we propose to conduct counterfactual analysis to attenuate the effects of two significant types of training biases: the event trigger bias and the frequent label bias. We also add tense information into event representations to explicitly place an emphasis on the contextual description. The second perspective is to provide proper uncertainty estimation and abstain from extraction when no relation is described in the text. By parameterization of Dirichlet Prior over the model-predicted categorical distribution, we improve the model estimates of the correctness likelihood and make TempRel predictions more selective. We also employ temperature scaling to recalibrate the model confidence measure after bias mitigation. Through experimental analysis on MATRES, MATRES-DS, and TDDiscourse, we demonstrate that our model extracts TempRel and timelines more faithfully compared to SOTA methods, especially under distribution shifts.
Submission history
From: Haoyu Wang [view email][v1] Mon, 10 Oct 2022 19:53:13 UTC (7,913 KB)
[v2] Wed, 12 Oct 2022 00:49:15 UTC (7,913 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.