Computer Science > Computer Vision and Pattern Recognition
[Submitted on 7 Oct 2022]
Title:A Simple Plugin for Transforming Images to Arbitrary Scales
View PDFAbstract:Existing models on super-resolution often specialized for one scale, fundamentally limiting their use in practical scenarios. In this paper, we aim to develop a general plugin that can be inserted into existing super-resolution models, conveniently augmenting their ability towards Arbitrary Resolution Image Scaling, thus termed ARIS. We make the following contributions: (i) we propose a transformer-based plugin module, which uses spatial coordinates as query, iteratively attend the low-resolution image feature through cross-attention, and output visual feature for the queried spatial location, resembling an implicit representation for images; (ii) we introduce a novel self-supervised training scheme, that exploits consistency constraints to effectively augment the model's ability for upsampling images towards unseen scales, i.e. ground-truth high-resolution images are not available; (iii) without loss of generality, we inject the proposed ARIS plugin module into several existing models, namely, IPT, SwinIR, and HAT, showing that the resulting models can not only maintain their original performance on fixed scale factor but also extrapolate to unseen scales, substantially outperforming existing any-scale super-resolution models on standard benchmarks, e.g. Urban100, DIV2K, etc.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.