Computer Science > Machine Learning
[Submitted on 27 Sep 2022 (v1), last revised 9 Jul 2023 (this version, v3)]
Title:DynDepNet: Learning Time-Varying Dependency Structures from fMRI Data via Dynamic Graph Structure Learning
View PDFAbstract:Graph neural networks (GNNs) have demonstrated success in learning representations of brain graphs derived from functional magnetic resonance imaging (fMRI) data. However, existing GNN methods assume brain graphs are static over time and the graph adjacency matrix is known prior to model training. These assumptions contradict evidence that brain graphs are time-varying with a connectivity structure that depends on the choice of functional connectivity measure. Incorrectly representing fMRI data with noisy brain graphs can adversely affect GNN performance. To address this, we propose DynDepNet, a novel method for learning the optimal time-varying dependency structure of fMRI data induced by downstream prediction tasks. Experiments on real-world fMRI datasets, for the task of sex classification, demonstrate that DynDepNet achieves state-of-the-art results, outperforming the best baseline in terms of accuracy by approximately 8 and 6 percentage points, respectively. Furthermore, analysis of the learned dynamic graphs reveals prediction-related brain regions consistent with existing neuroscience literature.
Submission history
From: Alex Campbell [view email][v1] Tue, 27 Sep 2022 16:32:11 UTC (361 KB)
[v2] Thu, 26 Jan 2023 20:37:11 UTC (1,718 KB)
[v3] Sun, 9 Jul 2023 11:55:29 UTC (9,158 KB)
Current browse context:
cs.LG
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.