Computer Science > Cryptography and Security
[Submitted on 20 Sep 2022 (v1), last revised 27 Sep 2022 (this version, v2)]
Title:Peer-group Behaviour Analytics of Windows Authentications Events Using Hierarchical Bayesian Modelling
View PDFAbstract:Cyber-security analysts face an increasingly large number of alerts received on any given day. This is mainly due to the low precision of many existing methods to detect threats, producing a substantial number of false positives. Usually, several signature-based and statistical anomaly detectors are implemented within a computer network to detect threats. Recent efforts in User and Entity Behaviour Analytics modelling shed a light on how to reduce the burden on Security Operations Centre analysts through a better understanding of peer-group behaviour. Statistically, the challenge consists of accurately grouping users with similar behaviour, and then identifying those who deviate from their peers. This work proposes a new approach for peer-group behaviour modelling of Windows authentication events, using principles from hierarchical Bayesian models. This is a two-stage approach where in the first stage, peer-groups are formed based on a data-driven method, given the user's individual authentication pattern. In the second stage, the counts of users authenticating to different entities are aggregated by an hour and modelled by a Poisson distribution, taking into account seasonality components and hierarchical principles. Finally, we compare grouping users based on their human resources records against the data-driven methods and provide empirical evidence about alert reduction on a real-world authentication data set from a large enterprise network.
Submission history
From: Iwona Hawryluk [view email][v1] Tue, 20 Sep 2022 14:54:28 UTC (448 KB)
[v2] Tue, 27 Sep 2022 11:49:56 UTC (448 KB)
Current browse context:
cs.CR
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.