Computer Science > Information Theory
[Submitted on 3 Sep 2022 (v1), last revised 14 Nov 2024 (this version, v3)]
Title:Outsourcing Control requires Control Complexity
View PDF HTML (experimental)Abstract:An embodied agent constantly influences its environment and is influenced by it. We use the sensorimotor loop to model these interactions and thereby we can quantify different information flows in the system by various information theoretic measures. This includes a measure for the interaction among the agent's body and its environment, called Morphological Computation. Additionally, we examine the controller complexity by two measures, one of which can be seen in the context of the Integrated Information Theory of consciousness. Applying this framework to an experimental setting with simulated agents allows us to analyze the interaction between an agent and its environment, as well as the complexity of its controller, the brain of the agent. Previous research reveals an antagonistic relationship between the controller complexity and Morphological Computation. A morphology adapted well to a task can reduce the necessary complexity of the controller significantly. This creates the problem that embodied intelligence is correlated with a reduced necessity of a controller, a brain. However, in order to interact well with their surroundings, the agents first have to understand the relevant dynamics of the environment. By analyzing learning agents we observe that an increased controller complexity can facilitate a better interaction between an agent's body and its environment. Hence, learning requires an increased controller complexity and the controller complexity and Morphological Computation influence each other.
Submission history
From: Carlotta Langer [view email][v1] Sat, 3 Sep 2022 13:36:59 UTC (3,691 KB)
[v2] Thu, 1 Jun 2023 13:21:39 UTC (3,981 KB)
[v3] Thu, 14 Nov 2024 10:29:09 UTC (2,182 KB)
Current browse context:
cs.IT
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.