Computer Science > Computer Vision and Pattern Recognition
[Submitted on 29 Aug 2022]
Title:Towards Explaining Demographic Bias through the Eyes of Face Recognition Models
View PDFAbstract:Biases inherent in both data and algorithms make the fairness of widespread machine learning (ML)-based decision-making systems less than optimal. To improve the trustfulness of such ML decision systems, it is crucial to be aware of the inherent biases in these solutions and to make them more transparent to the public and developers. In this work, we aim at providing a set of explainability tool that analyse the difference in the face recognition models' behaviors when processing different demographic groups. We do that by leveraging higher-order statistical information based on activation maps to build explainability tools that link the FR models' behavior differences to certain facial regions. The experimental results on two datasets and two face recognition models pointed out certain areas of the face where the FR models react differently for certain demographic groups compared to reference groups. The outcome of these analyses interestingly aligns well with the results of studies that analyzed the anthropometric differences and the human judgment differences on the faces of different demographic groups. This is thus the first study that specifically tries to explain the biased behavior of FR models on different demographic groups and link it directly to the spatial facial features. The code is publicly available here.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.