Computer Science > Machine Learning
[Submitted on 16 Aug 2022 (v1), last revised 20 Aug 2022 (this version, v2)]
Title:FedMR: Fedreated Learning via Model Recombination
View PDFAbstract:As a promising privacy-preserving machine learning method, Federated Learning (FL) enables global model training across clients without compromising their confidential local data. However, existing FL methods suffer from the problem of low inference performance for unevenly distributed data, since most of them rely on Federated Averaging (FedAvg)-based aggregation. By averaging model parameters in a coarse manner, FedAvg eclipses the individual characteristics of local models, which strongly limits the inference capability of FL. Worse still, in each round of FL training, FedAvg dispatches the same initial local models to clients, which can easily result in stuck-at-local-search for optimal global models. To address the above issues, this paper proposes a novel and effective FL paradigm named FedMR (Federating Model Recombination). Unlike conventional FedAvg-based methods, the cloud server of FedMR shuffles each layer of collected local models and recombines them to achieve new models for local training on clients. Due to the fine-grained model recombination and local training in each FL round, FedMR can quickly figure out one globally optimal model for all the clients. Comprehensive experimental results demonstrate that, compared with state-of-the-art FL methods, FedMR can significantly improve the inference accuracy without causing extra communication overhead.
Submission history
From: Ming Hu [view email][v1] Tue, 16 Aug 2022 11:30:19 UTC (5,457 KB)
[v2] Sat, 20 Aug 2022 04:42:37 UTC (1,311 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.