Computer Science > Computer Vision and Pattern Recognition
[Submitted on 28 Jul 2022 (v1), last revised 13 Sep 2022 (this version, v2)]
Title:DnSwin: Toward Real-World Denoising via Continuous Wavelet Sliding-Transformer
View PDFAbstract:Real-world image denoising is a practical image restoration problem that aims to obtain clean images from in-the-wild noisy inputs. Recently, the Vision Transformer (ViT) has exhibited a strong ability to capture long-range dependencies, and many researchers have attempted to apply the ViT to image denoising tasks. However, a real-world image is an isolated frame that makes the ViT build long-range dependencies based on the internal patches, which divides images into patches, disarranges noise patterns and damages gradient continuity. In this article, we propose to resolve this issue by using a continuous Wavelet Sliding-Transformer that builds frequency correspondences under real-world scenes, called DnSwin. Specifically, we first extract the bottom features from noisy input images by using a convolutional neural network (CNN) encoder. The key to DnSwin is to extract high-frequency and low-frequency information from the observed features and build frequency dependencies. To this end, we propose a Wavelet Sliding-Window Transformer (WSWT) that utilizes the discrete wavelet transform (DWT), self-attention and the inverse DWT (IDWT) to extract deep features. Finally, we reconstruct the deep features into denoised images using a CNN decoder. Both quantitative and qualitative evaluations conducted on real-world denoising benchmarks demonstrate that the proposed DnSwin performs favorably against the state-of-the-art methods.
Submission history
From: Hao Li [view email][v1] Thu, 28 Jul 2022 02:33:57 UTC (1,560 KB)
[v2] Tue, 13 Sep 2022 05:14:07 UTC (1,538 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.