Computer Science > Computer Vision and Pattern Recognition
[Submitted on 25 Jul 2022 (v1), last revised 26 Jul 2022 (this version, v2)]
Title:Optimal Boxes: Boosting End-to-End Scene Text Recognition by Adjusting Annotated Bounding Boxes via Reinforcement Learning
View PDFAbstract:Text detection and recognition are essential components of a modern OCR system. Most OCR approaches attempt to obtain accurate bounding boxes of text at the detection stage, which is used as the input of the text recognition stage. We observe that when using tight text bounding boxes as input, a text recognizer frequently fails to achieve optimal performance due to the inconsistency between bounding boxes and deep representations of text recognition. In this paper, we propose Box Adjuster, a reinforcement learning-based method for adjusting the shape of each text bounding box to make it more compatible with text recognition models. Additionally, when dealing with cross-domain problems such as synthetic-to-real, the proposed method significantly reduces mismatches in domain distribution between the source and target domains. Experiments demonstrate that the performance of end-to-end text recognition systems can be improved when using the adjusted bounding boxes as the ground truths for training. Specifically, on several benchmark datasets for scene text understanding, the proposed method outperforms state-of-the-art text spotters by an average of 2.0% F-Score on end-to-end text recognition tasks and 4.6% F-Score on domain adaptation tasks.
Submission history
From: Jingqun Tang [view email][v1] Mon, 25 Jul 2022 06:58:45 UTC (4,521 KB)
[v2] Tue, 26 Jul 2022 07:14:17 UTC (4,521 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.