Computer Science > Computer Vision and Pattern Recognition
[Submitted on 23 Jul 2022]
Title:Intelligent 3D Network Protocol for Multimedia Data Classification using Deep Learning
View PDFAbstract:In videos, the human's actions are of three-dimensional (3D) signals. These videos investigate the spatiotemporal knowledge of human behavior. The promising ability is investigated using 3D convolution neural networks (CNNs). The 3D CNNs have not yet achieved high output for their well-established two-dimensional (2D) equivalents in still photographs. Board 3D Convolutional Memory and Spatiotemporal fusion face training difficulty preventing 3D CNN from accomplishing remarkable evaluation. In this paper, we implement Hybrid Deep Learning Architecture that combines STIP and 3D CNN features to enhance the performance of 3D videos effectively. After implementation, the more detailed and deeper charting for training in each circle of space-time fusion. The training model further enhances the results after handling complicated evaluations of models. The video classification model is used in this implemented model. Intelligent 3D Network Protocol for Multimedia Data Classification using Deep Learning is introduced to further understand spacetime association in human endeavors. In the implementation of the result, the well-known dataset, i.e., UCF101 to, evaluates the performance of the proposed hybrid technique. The results beat the proposed hybrid technique that substantially beats the initial 3D CNNs. The results are compared with state-of-the-art frameworks from literature for action recognition on UCF101 with an accuracy of 95%.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.