Computer Science > Computer Vision and Pattern Recognition
[Submitted on 22 Jul 2022]
Title:Few-Shot Class-Incremental Learning via Entropy-Regularized Data-Free Replay
View PDFAbstract:Few-shot class-incremental learning (FSCIL) has been proposed aiming to enable a deep learning system to incrementally learn new classes with limited data. Recently, a pioneer claims that the commonly used replay-based method in class-incremental learning (CIL) is ineffective and thus not preferred for FSCIL. This has, if truth, a significant influence on the fields of FSCIL. In this paper, we show through empirical results that adopting the data replay is surprisingly favorable. However, storing and replaying old data can lead to a privacy concern. To address this issue, we alternatively propose using data-free replay that can synthesize data by a generator without accessing real data. In observing the the effectiveness of uncertain data for knowledge distillation, we impose entropy regularization in the generator training to encourage more uncertain examples. Moreover, we propose to relabel the generated data with one-hot-like labels. This modification allows the network to learn by solely minimizing the cross-entropy loss, which mitigates the problem of balancing different objectives in the conventional knowledge distillation approach. Finally, we show extensive experimental results and analysis on CIFAR-100, miniImageNet and CUB-200 to demonstrate the effectiveness of our proposed one.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.