Computer Science > Machine Learning
[Submitted on 12 Jul 2022 (v1), last revised 21 Feb 2023 (this version, v2)]
Title:Dateformer: Time-modeling Transformer for Longer-term Series Forecasting
View PDFAbstract:Transformers have demonstrated impressive strength in long-term series forecasting.
Existing prediction research mostly focused on mapping past short sub-series (lookback window) to future series (forecast window). The longer training dataset time series will be discarded, once training is completed. Models can merely rely on lookback window information for inference, which impedes models from analyzing time series from a global perspective. And these windows used by Transformers are quite narrow because they must model each time-step therein. Under this point-wise processing style, broadening windows will rapidly exhaust their model capacity. This, for fine-grained time series, leads to a bottleneck in information input and prediction output, which is mortal to long-term series forecasting. To overcome the barrier, we propose a brand-new methodology to utilize Transformer for time series forecasting. Specifically, we split time series into patches by day and reform point-wise to patch-wise processing, which considerably enhances the information input and output of Transformers. To further help models leverage the whole training set's global information during inference, we distill the information, store it in time representations, and replace series with time representations as the main modeling entities. Our designed time-modeling Transformer -- Dateformer yields state-of-the-art accuracy on 7 real-world datasets with a 33.6\% relative improvement and extends the maximum forecast range to half-year.
Submission history
From: Julong Young [view email][v1] Tue, 12 Jul 2022 08:58:44 UTC (1,277 KB)
[v2] Tue, 21 Feb 2023 13:10:44 UTC (2,542 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
Connected Papers (What is Connected Papers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.