Computer Science > Neural and Evolutionary Computing
[Submitted on 17 Jun 2022 (v1), last revised 10 May 2023 (this version, v2)]
Title:FreeREA: Training-Free Evolution-based Architecture Search
View PDFAbstract:In the last decade, most research in Machine Learning contributed to the improvement of existing models, with the aim of increasing the performance of neural networks for the solution of a variety of different tasks. However, such advancements often come at the cost of an increase of model memory and computational requirements. This represents a significant limitation for the deployability of research output in realistic settings, where the cost, the energy consumption, and the complexity of the framework play a crucial role. To solve this issue, the designer should search for models that maximise the performance while limiting its footprint. Typical approaches to reach this goal rely either on manual procedures, which cannot guarantee the optimality of the final design, or upon Neural Architecture Search algorithms to automatise the process, at the expenses of extremely high computational time. This paper provides a solution for the fast identification of a neural network that maximises the model accuracy while preserving size and computational constraints typical of tiny devices. Our approach, named FreeREA, is a custom cell-based evolution NAS algorithm that exploits an optimised combination of training-free metrics to rank architectures during the search, thus without need of model training. Our experiments, carried out on the common benchmarks NAS-Bench-101 and NATS-Bench, demonstrate that i) FreeREA is a fast, efficient, and effective search method for models automatic design; ii) it outperforms State of the Art training-based and training-free techniques in all the datasets and benchmarks considered, and iii) it can easily generalise to constrained scenarios, representing a competitive solution for fast Neural Architecture Search in generic constrained applications. The code is available at \url{this https URL}.
Submission history
From: Niccolò Cavagnero [view email][v1] Fri, 17 Jun 2022 11:16:28 UTC (1,864 KB)
[v2] Wed, 10 May 2023 10:04:17 UTC (1,528 KB)
Current browse context:
cs.NE
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.