Mathematics > Numerical Analysis
[Submitted on 19 Jun 2022 (v1), last revised 1 Feb 2023 (this version, v3)]
Title:A robust and conservative dynamical low-rank algorithm
View PDFAbstract:Dynamical low-rank approximation, as has been demonstrated recently, can be extremely efficient in solving kinetic equations. However, a major deficiency is that they do not preserve the structure of the underlying physical problem. For example, the classic dynamical low-rank methods violate mass, momentum, and energy conservation. In [L. Einkemmer, I. Joseph, J. Comput. Phys. 443:110495, 2021] a conservative dynamical low-rank approach has been proposed. However, directly integrating the resulting equations of motion, similar to the classic dynamical low-rank approach, results in an ill-posed scheme. In this work we propose a robust, i.e. well-posed, integrator for the conservative dynamical low-rank approach that conserves mass and momentum (up to machine precision) and significantly improves energy conservation. We also report improved qualitative results for some problems and show how the approach can be combined with a rank adaptive scheme.
Submission history
From: Carmela Scalone [view email][v1] Sun, 19 Jun 2022 10:39:22 UTC (617 KB)
[v2] Wed, 3 Aug 2022 14:38:56 UTC (807 KB)
[v3] Wed, 1 Feb 2023 16:54:12 UTC (790 KB)
Current browse context:
math.NA
Change to browse by:
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.